
Best Practices for Web Developers v1.01

by Kate Rhodes (masukomi at masukomi dot org)

May 18, 2007

1

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative
Works 3.0 License. http://creativecommons.org/licenses/by-nc-nd/3.0/

Contents

1 Let’s get a few things straight 3

2 Tools, tools, tools 4

3 Getting version control right 5

3.1 You have a production branch. 6

3.2 Emergency bug fixes start with production. 6

3.3 Exploring new functionality starts with a new branch. 6

3.4 You have a main development branch. 7

3.5 You are not using a version control system that makes branching and merging a pain. 7

3.6 You are not using CVS anymore. 7

3.7 You have started using a version control system that’s actually good. 8

4 Testing 10

4.1 Basic testing concepts . 11

4.1.1 Unit testing . 11

4.1.2 Functional / Acceptance testing . 11

4.1.3 Integration testing . 12

4.1.4 System testing . 12

4.2 Heuristic Driven Development . 13

4.2.1 Triage . 13

4.2.2 When things break. 14

4.2.3 Your development environment . 15

2

CONTENTS 3

5 Optimization & load tests 16

5.1 Triage based on predicted usage. 16

5.2 Create test data early in realistic amounts. 17

5.3 Mirror your production environment. 17

5.4 Learn to use profiling software. 18

5.5 Set some targets. 18

5.6 Use diversionary tactics. 18

5.7 Load testing rules of thumb. 19

6 Application deployment 20

6.1 Rules of thumb . 20

6.1.1 Your live webapp is never in a state that can’t be rolled back to in the future. 20

6.1.2 You have copies of all your server / client specific configuration files in version
control. 21

6.1.3 Updates are always done atomically. 21

6.1.4 All instances of your webapp are in the same state. 22

6.2 Automated application deployment . 22

Chapter 1

Let’s get a few things straight

You’re cheating.

You’re doing all your development in trunk. You’re screwed if a major bug surfaces while you’re
in the middle of exploring some new functionality because you’ve already touched half the code.
Your version of “going live” is some variation on just copying files from here to there. Maybe you’re
all fancy and doing “svn update” to get your code there, but lets be honest, there’s always a bit
of crossing your fingers and hoping things don’t break. You know what unit tests are, but you’ve
got some lame excuse for the fact that you don’t actually have any, or at least not enough to be
actually worth anything. Or maybe you want unit tests but just “haven’t gotten around to it.”

If this isn’t you feel free to stop reading here. If this is you then welcome to the club. We suck.
For entirely too long now you and I have been too lame to actually get off our asses and do things
right. But guess what. We’ve taken the first step. You and I, and everyone else reading this, are
going to stop acting like inexperienced college grads and start acting like the professionals we are
(even if you happen to also be an inexperienced college grad).

Ready to start doing things right?

Good. Let’s start off with a definition:

Heuristic
Pronunciation: hyû’ristik
Definition:
1. [n] a commonsense rule (or set of rules) intended to increase the probability of

solving some problem
2. [adj] of or relating to a general formulation that serves to guide investigation
3. [adj] (computer science) relating to or using a heuristic rule

Got it? That’s how we’re going to approach things here. We’re going to take a heuristic approach
to version control, unit testing, and app deployment. The zealots are going to hate us. But we’ll
be getting things done while they’re worrying about getting test coverage on that last 10% of their
code-base.

4

Chapter 2

Tools, tools, tools

Listen, everyone’s got their opinion on what tools are best, but the longer you hang around the
more you come to realize that it just doesn’t matter. Pick something that works for you. If you
find something better, switch. I’m going to be recommending a few atypical tools here, but don’t
worry about it; you’re smart. You can extrapolate what I’m talking about doing to your favorite
tool, or use it to choose some other tool you like better. What’s important is that you get tools
that make it easy for you and your coworkers to get your job done easily and right.

5

Chapter 3

Getting version control right

This is where we are probably the most lame. Some of us are just more lame than others. So let’s
just lay out how we should be doing things and then tackle why and what we need to do to actually
get there. If you’re not using version control now the rest of us are just going to pretend we didn’t
know that and you are going to stop reading this and go install a version control system (VCS) the
second, nay, nanosecond you finish this chapter. We shall never talk of this again.

By the time we’re done getting our asses into shape all of these statements should be true:

1. You have a production branch.

2. Every time you have to fix some catastrophic bug that showed up on the live site you do so
in another branch based on production.

3. Every time you want to explore some new functionality you do so on a new branch and that
branch is always based off of the production branch.

4. You have a main development branch. When you’re done speccing out that new functionality
you merge it into here for all the other developers to share and enjoy.

5. You are not using a version control system that makes branching and merging a pain. If it’s
a pain you’ll avoid it. If you avoid it, like you have been, you’re a dork and you are most
definitely not a dork, now are you?

6. You are not using CVS anymore.

7. You have started using a version control system that’s actually good.

I admit, some of these seem a bit excessive. Especially all that branching. But there are good
reasons for each of those statements. So let’s explore why:

6

CHAPTER 3. GETTING VERSION CONTROL RIGHT 7

3.1 You have a production branch.

This is probably the biggest one. Some of us get this one right at least, but far too many of us
are still doing all our work in the trunk. You need a production branch for the simple reason that
you are fallible and some of those dorks you have to work with are even more fallible. It is just a
matter of time before some bug sneaks onto the live site. When it does you’ll need to fix it ASAP
and you’ll need to know that your patch doesn’t introduce some new bugs from that code you were
working on. If you’ve got a production branch you can know with certainty exactly what’s on the
server right now and you’ll have a pristine starting point from which to start tracking down and
killing that bug.

The only time this branch doesn’t reflect exactly what’s on your live site is in the short time between
when you add new code to it and when you deploy it to the live site. Everything that gets deployed
to the live site from here gets a sensible tag that you don’t have to look up in some document when
you need it.

3.2 Emergency bug fixes start with production.

We pretty much just covered why it’s good to start from the production branch but there’s a little
more to it. People are counting on your site. You can’t afford to be “pretty sure” you haven’t
touched anything else in the system when patching the bug. Reading through old check-in logs to
see what we’ve changed is tedious and boring, and lets be honest with ourselves here: we’re not
going to do it anyway.

Before you touch that bug you’re going to make a branch from production to work on it. Remember
number five? “You are not using a version control system that makes branching and merging a pain”.
You are going to have the benefit of version control on your changes no matter how small they are.
And remember 1b? That means no check-ins to production until they are ready to go and you’ve
still got to check it into the dev branch too. Are you seriously considering trying to merge the live
branch into the dev branch? That’s just asking for pain. So you start with a branch of production,
write the test, fix the bug, merge it in to the dev branch, merge it into the production branch, and
deploy. And no, as you’ve probably guessed I’m not a unit testing freak but you just had a bug
make it to the live site that was so severe it couldn’t wait until the next push. You can’t afford
that to happen again so you write a test for it.

3.3 Exploring new functionality starts with a new branch.

Most people will want to skip this rule and just work on the dev branch. But, most of the time this
is because branching and merging suck in most version control systems. Exploring new functionality
in a branch has a lot of benefits:

• “OMFGWTFBBQ that feature is sooooo cool.” It’s so cool you’ve decided to push it live
ahead of all those other whozeywhatsits you’ve been working on. This is a non-issue if you’ve
worked it out in it’s own branch. Just merge it with production when you’re ready to go and
you’ve got no worries about other things coming along for the ride.

CHAPTER 3. GETTING VERSION CONTROL RIGHT 8

• “Ok that sucked.” You thought it would be cool but it just ended up being lame, or breaking
more things than you feel like dealing with, or whatever. You’re not keeping it. If you worked
it out on it’s own branch you’re done. It’s not messing with anyone else’s code. It’s not in
the trunk. Just walk away. If you were working on the trunk you’d have to roll back all those
changes.

• “It’s good but it can wait.” Sometimes this means wait till the next push, in which case you
just merge it into the dev branch. Sometimes this means you need to shelve it for a couple
months and wait for some other major newness, in which case you’ll be quite relieved you
weren’t working this out the development branch. Again, you’re done. Just walk away. A
couple months from now when you’re ready to use it you can merge it into dev. Yeah that
merge may be a pain because of all the other changes that will take place in the interim but
it’s less of a pain then trying to juggle keeping it in the dev branch and needing to work
around it.

3.4 You have a main development branch.

Duh.

3.5 You are not using a version control system that makes

branching and merging a pain.

Branching is easy. It’s so easy it’s trivial. It’s so trivial it’s less work to branch than it is to drill
down to a particular file and open it.

“But Kate,” (that’s me) you say, “branching and merging is a pain.”

No. It’s just a pain in that lame ass VCS you’re using now. Move on.

If you keep using something which makes you want to avoid branching you’ll eventually give up
and go back to just doing all your work in development. And you are not a dork. You are going to
start doing things right and than means setting yourself up with tools that do what you need them
to do in such a way that you don’t mind actually doing it.

3.6 You are not using CVS anymore.

CVS is for dinosaurs. CVS was written by dinosaurs.... literally. Ok, maybe not literally, but
it’s roughly as old as dirt. For some reason I’ll never understand it got to a point where it was
workable and then nobody bothered to actually make it good even though tens of thousands of
developers were using it every day. There are a number of other good systems out there and they’re
all relatively easy to install for a geek like you. We’re practically in the middle of a version control
renaissance these days.

CHAPTER 3. GETTING VERSION CONTROL RIGHT 9

3.7 You have started using a version control system that’s

actually good.

The main criteria here being that whatever system you decide on it must: make branching and
merging feel almost trivial to you, have a command set that’s easy and flexible, and allow multiple
people to work on the same file at the same time. If your system can do all that and you and your
coworkers are happy with it then don’t change.

I’m going to stick my neck out here and suggest that you really ought to be using a distributed
version control system. I don’t care if you have a development team of one or one thousand.
Traditional version control systems that work like CVS and Subversion are good. But, you’re
missing out on some truly great features if you stick with them.

The leaders, at the moment seem to be Darcs http://www.darcs.net, Git http://git.or.cz/,
Mercurial http://www.selenic.com/mercurial/, and Bazaar http://bazaar-vcs.org/. Darcs
has the advantage of a very well thought out set of commands, each with an corresponding undo. Git
is being used to manage the Linux kernel and has some significant performance benefits. Mercurial
is being used for the open source version of the Java Development Kit. Bazaar is being used to
manage the Samba project but not much else of note. They’re all conceptually fairly similar but
each has taken a very different approach in their respective implementations. Darcs is written in
Haskell, Git is written in C and leverages a variety of shell scripts, which means it doesn’t work very
well under Windows, and Mercurial and Bazaar are written in Python. All have Eclipse plug-ins
in various stages of development.

It was my intent to discuss all the reasons that distributed version control systems are great here,
but it turns out I’ve already discussed the feature that I find most advantageous above: branching.
And, Mark Reinhold[2] has summarized the high-points quite well with this:

• A branch is just another repository, not some state in a central database. You can create
branches at will to explore new ideas and, equally easily, simply delete them if things don’t
work out.

• You don’t need to be connected to a server - or even be on the network - in order to get work
done [and still take full advantage of revision control].

• You don’t need to set up and manage a central [VCS] host with sufficient disk space, compute
power, bandwidth, and backup to support the concurrent [VCS] operations of your entire
development community.

The one thing Mark doesn’t mention is the huge advantage a distributed VCS has for open source
projects. If Mozilla has taught us anything it’s that you’re not going to get thousands of developers
working on your project. So, while huge numbers of developers is something that distributed VCS
handle exceedingly well it’s pretty much a moot point. In my experience, a developer interested in
some OSS (Open Source Software) project will download the source from a traditional VCS, poke
around to understand it, and, if they’re smitten with the idea, start customizing it for their needs.
But, they are forced to either work without the benefits of version control or they have to check it
into their own personal VCS. If they check it into their own the projects main developers can pretty

CHAPTER 3. GETTING VERSION CONTROL RIGHT 10

much forget about ever getting patches from them because they’re no longer able to sync with your
tree and it would be way more work than they generally want to do to get synced and give you a
patch that was useful. If they work without VCS (because they don’t have commit rights to your
VCS) they may send in a patch but the work to get there has been like climbing a rock face without
lines and harnesses.

If the projects developers were to use a distributed VCS each developer would be working off of
their own personal copy of it that could be synced at any point in time no matter how many
changes, revisions, or commits they have made. They’re generally not going to check it into their
own VCS system because that’s work that doesn’t get them any real benefit because they already
have version control via their checkout and the fact that it’s a distributed system. The end result
is that they don’t need to work without the safety and security of an VCS and they will generally
always be working on a system they can easily send you changes from when they’re ready.

Chapter 4

Testing

I don’t even want to think about how much heat I’m going to get for what I write here but hopefully
the testing zealots will agree with me that a heuristic approach to testing is better than a half-assed,
or non-existent approach to testing. So, without further ado...

I’m going to assume that you’re being good about maintaining a strict MVC (Model View Con-
troller) separation in your app. If not please imagine that I have just walked up beside you, smacked
you up-side the head and told you to “Stop being stupid!” If you don’t know what MVC is Wikipedia
has a good article on it. http://en.wikipedia.org/wiki/Model-view-controller

If you Google around you’ll see that the prevailing opinion is that you should test everything and
that you should be striving for 100% test coverage. And, while this is good, and a laudable goal,
for most developers this just isn’t realistic for a variety of reasons both personal and environmental.
The practice of test driven development (TDD) , or the more recent behavior driven development
(BDD) is a great idea, and if you can manage manage it I highly recommend it. But, as much as
we’d like to promise ourselves that we’ll start doing this right away, most of us know deep down
inside that that’s a pile of bull. So, instead of an all or nothing approach I’m going to advocate the
rarely mentioned heuristically driven development (HDD) approach. It’s rarely mentioned because
I just made it up. But, HDD, like any other methodology, depends on you understanding its basic
concepts, which happen to be the same as the other testing methodologies. So, before we get on
with what HDD really means (see section 4.2 on page 13) we need to cover those basic concepts,
which you’re hopefully already familiar with.

If you have the discipline, or your boss is forcing you, to do TDD development you can skip this
chapter entirely. Many congratulations to you for doing things the best possible way. If you’re like
me, keep reading...

11

CHAPTER 4. TESTING 12

4.1 Basic testing concepts

4.1.1 Unit testing

In computer programming, unit testing is a procedure used to validate that individual
modules or units of source code are working properly.

More technically one should consider that a unit is the smallest testable part of an
application. In a Procedural Design a unit may be an individual program, function,
procedure, web page, menu etc. But in Object Oriented Design, the smallest unit is
always a Class; which may be a base/super class, abstract class or derived/child class.

A unit test is a test for a specific unit. Ideally, each test case is independent from the
others; mock objects can be used to assist testing a module in isolation. Unit testing is
typically done by the developers and not by end-users.[3]

What some people fail to grasp is the distinction between unit testing, functional testing, integration
testing, and system testing. Far too frequently what people call “unit” tests are really “integration”
tests. The distinction is important because frequently if you set out to write a unit test but find
that you can’t without first booting up half of the other components in your app it’s a safe bet that
you’ve broken encapsulation and are too tightly coupled to other pieces of the system. In general
you should be able to write any unit test with basic language objects or the help of a few mock
objects http://en.wikipedia.org/wiki/Mock_Object.

4.1.2 Functional / Acceptance testing

Acceptance testing generally involves running a suite of tests on the completed system.
Each individual test, known as a case, exercises a particular operating condition of the
user’s environment or feature of the system, and will result in a pass or fail boolean
outcome. There is generally no degree of success or failure. The test environment
is usually designed to be identical, or as close as possible, to the anticipated user’s
environment, including extremes of such. These test cases must each be accompanied
by test case input data or a formal description of the operational activities (or both) to be
performed - intended to thoroughly exercise the specific case - and a formal description
of the expected results.[3]

Now, since we’re taking a heuristic approach you can skip anything “formal” and be realistic. You
should have some predefined starting and ending conditions, and some, hopefully automated, way
of testing them. But, long before you get to the automated testing part you should have yourself a
sit-down with whoever you’re developing this thing for and walk them through it, or a mock-up of
it. You’ll find nine times out of ten that when developing something for a specific group or company
it doesn’t matter how well it was described it on paper. They’ll still say something to the effect of
“Oh, well that’s nice, but we need it to [insert thing they never mentioned before].”

Once you’ve gotten something close to what they actually wanted (as opposed to what they claimed
they wanted) you can start putting together some automated tests for it. I really don’t recommend

CHAPTER 4. TESTING 13

spending too much time writing functional tests before this point because it’s usually easier with
tools like Selenium and MaxQ to just record a correct sequence than it is to tweak an existing one.

Most of the time you’ll find that the line between Functional tests and System tests (see below)
tends to blur, and that’s ok... most of the time, but you should always try and decouple the
components of your application as much as possible. If you successfully decouple everything you
can use mock objects to represent all the interactions with remote machines or applications and
just test the local functionality. For example. Imagine your app sends e-mails. Wouldn’t it be
better if you could test your system without having to have a working SMTP server, appropriate
accounts and permissions, and net access? Just use a mock SMTP server and you can test all your
e-mail sending routines without having to worry about potential network failures, processing time
for your e-mails as they pass through overloaded spam filters, etc.

4.1.3 Integration testing

Integration testing ... is the phase of software testing in which individual software
modules are combined and tested as a group. It follows unit testing and precedes
system testing.

Integration testing takes as its input modules that have been unit tested, groups them
in larger aggregates, applies tests defined in an integration test plan to those aggregates,
and delivers as its output the integrated system ready for system testing.[3]

A real world example would be a test that makes sure that the models you’re loading from the
database and saving to it actually do so correctly. You’re testing the integration of your Object
Relational Mapping (ORM) system and your persistent storage system. Fortunately for most of us
those two components were written by the authors of our favorite web framework and have already
been thoroughly tested. Testing them would be redundant and wasteful. What we do need to test
though, is the integration of our controllers and models as well as our web service APIs.

4.1.4 System testing

System testing is testing conducted on a complete, integrated system to evaluate the
system’s compliance with its specified requirements. System testing falls within the
scope of Black box testing, and as such, should require no knowledge of the inner design
of the code or logic.

As a rule, System testing takes, as its input, all of the "integrated" software components
that have successfully passed Integration testing and also the software system itself
integrated with any applicable hardware system(s). The purpose of Integration testing
is to detect any inconsistencies between the software units that are integrated together
(called assemblages) or between any of the assemblages and the hardware. System
testing is a more limiting type of testing; it seeks to detect defects both within the
"inter-assemblages" and also within the system as a whole.[3]

In short, you boot up your app and test that when everything is put together and you start using
it like a real person it doesn’t go “boom.”

CHAPTER 4. TESTING 14

4.2 Heuristic Driven Development

If heuristic testing is based on “a commonsense rule (or set of rules) intended to increase the
probability of solving some problem”. We need to first ask ourselves what the “problem” we’re
trying to solve is. “Things going boom” is one answer, but lets be honest with ourselves. We’re
actually ok with some things going “boom”. If we weren’t we’d be working for NASA. Every other
development house I know of regularly releases software with bugs in it. As long as nothing too
important breaks and nothing breaks in a way that leaves you looking like an idiot there’s a good
chance you’re willing to deal with it. So, now that we’ve admitted the truth to ourselves, we can
start triaging our app.

4.2.1 Triage

Triage is a system used by medical or emergency personnel to ration limited medical
resources when the number of injured needing care exceeds the resources available to
perform care so as to treat those patients in most need of treatment who are able to
benefit first.

The word triage is a French word meaning "sorting", which itself is derived from the
Latin tria, meaning "three". The term literally means sorting into three categories.[3]

My recommendation is to triage your app while you write it because I have yet to meet the person
who found writing tests for an existing app to be anything but a chore. If you’ve come into a
project that’s already got a lot of untested code this approach still works just as well, if not more
so, but do yourself a favor and write tests while you’re writing the code and it’s still fresh in your
mind. You and I both know that it just feels like work to have to go back and write them later.

In medical triaging there are three states “minor”, “delayed”, “immediate” and “morgue”. Yeah, I
don’t know either. Maybe the French didn’t want to think about the dead ones... Anyway, your
app can be triaged into the same categories, although you’d probably be better off calling them
something like “minor”, “complex”, “critical”. and “morgue” .

“Minor” is well, minor. Mostly this is code that you have high confidence in, is so simple that the
odds of it breaking are low, and if it does break it’s more of an inconvenience than anything
else.

“Complex” code is not necessarily mission critical but it is more prone to breaking than a simple
loop. If you can refactor it into a set of simple routines do so. If not, you should probably
test it because the more complicated something is the greater the chance that you, or your
coworkers can screw it up. We’re human. We screw stuff up; accept it and take measures to
prevent it.

“Critical” code is “mission critical”. If that code breaks your app is screwed. Your customers
will start brandishing hatchets and leave your site in droves. Your investors will reconsider
participating in your next round of financing. This code is critical. There is no excuse for not
testing this. You don’t need to imagine me smacking you up-side the head for this one. Some
real person will do it for me when they find out you just crossed your fingers and hoped that
“it looked like it was working”, actually meant “i know for a fact that it’s working.”

CHAPTER 4. TESTING 15

“Morgue” would be for old dead code that should really be culled. Either it no longer works,
it’s been commented out, or it’s no longer touched by any part of the system. Get rid of it.
If you ever need it again it’s in your version control system. Leaving it in only makes your
system harder to maintain or your code harder to read (because you’re skipping over all the
commented out sections). In the instances where you are culling code from a working class
you may want to leave yourself a note that, “removed code that used to do foo. “ and include
some reference to the revision / tag / whatever in your VCS where it was last seen.

So, before you write the first line of the function, take a second to ask yourself if you’ve got your
head wrapped around what you’re doing enough that you could write the unit test for it right now,
or if writing the unit test would help you to understand what you need to code in the function. If
you answer yes to either of these then go write the test, then write the function. But, I know you.
You’re going to skip this at least half the time. Bad developer! No cookie! So, with TDD being
skipped (“just this once, really. I promise”) for this function we need to triage what we write. If
you finish this and move on to anything else without first triaging it I shall, once again, smack you
up-side the head. If I’m not around you’re going to have to promise to do it yourself. TRIAGE IS
NOT OPTIONAL. Got it?

If your triage comes up critical you write the test for it now. No checking your e-mail. No surfing.
Do it Now. If you have to leave, get someone else to write it now or take other measures to guarantee
it will be written before you touch another line of code. Do whatever it takes. This code is critical
to your apps survival.

If your triage comes up complex you really ought to write a test for it. Putting it off is a bad idea
because that introduces the possibility it won’t get done.

If your triage comes up minor it’s a judgment call. How confident are you about it? Are you sure
it’ll be trivial if it does break?

4.2.2 When things break.

I don’t care if you have 1000% code coverage, even NASA with their incredible attention to detail
and quality code with tons of peer review and documentation still releases code with unforeseen
bugs. So, it’s really just a matter of time before things do go wrong. With that in mind your path
going forward is simple:

1. Isolate the bug.

2. Write a test for it. It should, obviously, fail.

3. Fix the bug.

4. Rerun the test.

5. Check fixes into the appropriate branch(es).

If this is a bug on your live site you need to create a new branch of the code-base before step one.

CHAPTER 4. TESTING 16

4.2.3 Your development environment

Your development environment is the same environment your app will be running in on the pro-
duction server. You need at least one main developer working this way. This means that your
computer has the exact same versions of your database, whatever language(s) you develop in, and
operating system. If you don’t do this then how do you know that when you put your site live some
missing library or version mismatch or operating system quirk isn’t going to bring it all crashing
down. These things all need to be part of your system tests, but if you’re developing in the same
environment your app will be running in on the server then you are constantly doing a small, but
very important form of system test.

Chapter 5

Optimization & load tests

Clinton Forbes has a great blog post on this subject http://clintonforbes.blogspot.com/2007/
04/on-shell-be-right-mate-approach-to.html and much of the writing in this chapter is based
on the ideas he set forth.

The common wisdom is that you should never pre-optimize, instead you should wait until you
actually discover something is slow and then optimize it. The problem with that isn’t the advice
but the fact that developers rarely do what it takes to find out if something is slow or not before
deploying it. Some people also go the other way and spend time trying to optimize everything,
which is generally just a waste of time and money because you spend your time optimizing things
that just don’t need it.

I wish claim credit for the following list of tips but honestly, it’s a paraphrased version of Clinton’s:

1. Triage based on predicted usage.

2. Create test data early in realistic amounts.

3. Mirror your production environment.

4. Learn to use profiling software.

5. Set some targets.

6. Use diversionary tactics.

5.1 Triage based on predicted usage.

In most webapps “features” will be equivalent to “pages”. Just like we were triaging code to decide
what code to test we need to triage our features / pages based on which ones we predict will get
the most usage and which of those require the most work or time on the back end.

If we stick with the same triage terms of minor, complex, critical, and morgue in this context they
would work out like this:

17

CHAPTER 5. OPTIMIZATION & LOAD TESTS 18

“minor” features are either really fast or not slow and rarely used. Keep going.

“complex” features are generally going to be edge cases. If you’ve got the time, or suspect it may
be a problem, write a load test.

“critical” features are going to be hit constantly. Ones that require a good amount of work on the
back end too are even more critical.

“morgue” features would be those things that are just going to be slow no matter what you do
(see section 5.6).

In the beginning “predicted usage” is all you’ll have to go on. But, once your site is live be sure
to have hit counters that track the usage of specific features. One page may result in one call to
feature A and four to feature B. Over time that may be a bigger issue than you initially thought.
Or maybe people just don’t use the site the way you thought they would. Don’t guess when it’s so
easy enough to track real usage.

5.2 Create test data early in realistic amounts.

This is one of the very first lessons that I learned as a junior developer many years ago.
I wrote a lovely but complex SQL query that ran in 0.01s on our development server
but took over a minute to execute on the production database which stored pricing
data for Australia’s largest retailer... Had the team been working against a full copy of
the production database I would have discovered my inefficient code early, while I was
actually writing it, rather than later when were were in user testing. - Clinton Forbes

Real data is always best if you can get your hands on it but if you can’t just write a script to fill
up your database with a realistic amount of varied data. Don’t just use it when developing either.
Use it in your automated tests too. Putting it in your tests has two advantages. 1) It will provide
more edge cases in the data which means your tests will be proving that things work not just in a
handful of cases but in a significantly varied set of cases. 2) If your automated tests start taking
forever to run on a decent computer you know you need to start looking for things to optimize.

5.3 Mirror your production environment.

This should be obvious. Sadly, for many people, it isn’t. The best case scenario is to have the
development platform match the production environment not just in software (see section 4.2.3)
but in hardware too. Unfortunately the best case scenario is frequently not affordable or even
possible. Imagine if every one of Google’s developer had their own Google infrastructure to test
on. In most cases though, it’s possible to have a test server set aside that is either identical to
the production box or pretty close. It’s also important to replicate any supporting boxes. If your
database is on a different box than your web server you need to have a test environment that
replicates that setup. Otherwise, you’ll never see issues brought on by network latency.

CHAPTER 5. OPTIMIZATION & LOAD TESTS 19

This is incredibly important because otherwise you will never be able to get a realistic idea of how
your app performs under a repeatable load. Most of us have mediocre development boxes and fairly
sweet servers. We could run a load test on our dev boxes but the data we got from it would be
almost meaningless. The only thing you could be confident about is that the production box would
do better. Which is fine if your load tests are running great on your dev box but can only really
tell you which parts are slower relative to others if the load tests don’t run great on it.

5.4 Learn to use profiling software.

There are two types of profiling software that come into play here: code profiling, and load testing.
The former is specific to your chosen language or platform and a little Googling will go a long way
towards finding the best profilers for your environment (assuming there are any). The short short
definition is that a code profiler tests the performance of various pieces of your code. They can
be terribly useful, especially when you’ve written nicely modularized code but they’re a bit out of
scope for this chapter.

When it comes to webapps though, load tests don’t have to be tied to your webapp’s language or
platform at all. There are a number of great open source load testing tools written Java, many of
which use Jython. Perl, having been so integral to the web’s development has a bunch too. But
really it doesn’t matter. Look for the tools that will make it easiest to get your tests written. If
you can find a tool whose tests can be kicked off by your tests suite it’s even better, but since load
tests generally take a long time to run they’re not something you want to have in every test run.

5.5 Set some targets.

You can’t know if your app is “fast enough” if you haven’t defined “enough”. Is 200 simultaneous
users “enough”? It is for most webapps but it certainly isn’t for sites like Slashdot. And, don’t
forget to consider bandwidth issues. If your users are all in the US or the EU you can generally
assume they’ve got broadband connections. If they’re scattered across China... well, you may be
lucky if they get a 56.6k modem connected to the net for half an hour a day.

5.6 Use diversionary tactics.

If you can’t make your software faster, make it seem faster. Developers who create
desktop GUI applications have been doing this for years. Keep the user’s mind busy with
cute little animations and barber-shop style progress bars. ’AJAX’ web-applications
often retrieve data no faster than ’Web 1.0’ applications that refresh the entire page.
However the AJAX application may seem faster because the user is not presented with
a boring white page but is instead given an animated GIF to pass the time. - Clinton
Forbes

I’m not sure that applications actually seem faster when you do this but there have been a number of
tests performed over the years that confirm that users are much more accepting of slow procedures
if it looks as if the computer is doing something as opposed to just sitting there with no feedback.

CHAPTER 5. OPTIMIZATION & LOAD TESTS 20

5.7 Load testing rules of thumb.

Load testing methods and strategies for webapps could fill a book. In fact, it already fills a number
of them plus at least one book on testing SOA and Web Services http://www.amazon.com/gp/

product/0123695139

The short short short version is that there are two basic types of load tests that you’ll need to put
together. The first test simulates real users and includes significant pauses between page hits that
reflect how long you think an anverage user would spend on each of the pages. The second simply
pounds your site into submission by repeatedly hitting a feature or set of features until they can’t
handle any more. These tests, while entirely unrelistic let you know where your app’s breaking
point is.

It’s important to remember when simulating users that you have to stagger their hits because it’s
highly unlikely that your maximum expected number of users are all going to hit your site in the
exact same instant. Even better, randomize the pauses and starting point for each of those users.
Then rerun the tests a few times to get an average.

Chapter 6

Application deployment

I’m going to lay out some rules of thumb for deploying webapps and then go into the why they’re
important. But first I should note that while all of these are very important, when you start using
an automated tool like Capistrano you stop having to worry about these, because you just take
care of them all in the beginning when you write your deployment script.

6.1 Rules of thumb

1. Your live webapp is never in a state that can’t be rolled back to in the future.

2. You have copies of all your server / client specific configuration files in version control.

3. Updates are always done atomically.

4. All instances of your webapp are in the same state.

6.1.1 Your live webapp is never in a state that can’t be rolled back to in
the future.

The basic idea here is that at any given point in time your site is probably in a working state, but
it’s only a matter of time before some hideous bug rears it’s head. Frequently that hideous bug was
introduced in a recent update to the site. Obviously you want to just fix the bug and update the
site, but sometimes the bug can require far more time to fix than you are willing to allow your live
site to be broken for. So, you have to roll back to the last known working version of your site until
you can get a patch ready and tested. If you’ve got your site deployed on multiple boxes you need
to be able to roll all of them back.

I’ve seen, and been responsible for, far too many sites where when a bug was found a fix would be
made, but since we didn’t have good branching habits, because we had tools that made it a pain,
we would make that fix in the development branch, in the middle of half-finished new functionality.

21

CHAPTER 6. APPLICATION DEPLOYMENT 22

We obviously couldn’t roll that out so we’d check in the patch and then upload just the affected
files to the server(s). Ignoring the obvious problem that the dev branch might have been so altered
that a fix there might not fix the bug on the server, we have the problem that, assuming our patch
works well, when we go to roll out the new features in a week or so there is no way we’ll be able to
roll the server back to that patched, and working, state if we need to because it was an essentially
random collection of files from various points in development.

The solution is simple, but depends on you having good branching habits. You have your production
branch, you make your changes elsewhere and when they’re done merge them into the production
branch. Then, if the merging process didn’t already do this, you tag this newly patched version of
the production branch in such a way that you can easily remember/find it should you ever need to
roll back to it. And, of course, you only push code from the production branch to the live server(s).

6.1.2 You have copies of all your server / client specific configuration
files in version control.

Most of the sites I’ve worked on that require different configuration settings on the live site than
they do on the dev boxes, or that have multiple live sites (each with their own settings), tend to
have the conf files in place on the server and nowhere else. The problem is that the same file has to
be in different states for each server. I’ve also seen the same thing happen when instead of server
specific settings they were customer specific settings, like customer name and logo for a customer
specific installation. But not backing these up in version control is just crazy. What if your server
goes up in flames?

This is an incredibly easy problem to fix. You just make a folder for each type of conf file, naming
it, and them in some sensible way. For example: let’s say you’re using Apache and need a different
http.include file for each server. Just make an http_includes folder and fill it with files named
server_foo.http.include, server_bar.http.include, etc.. If you’re using an automated deployment
tool you can just configure it to copy the appropriate file out of there, stick it in the appropriate
place for the server to find it, and rename it accordingly. And, since you’re almost never going to
have to actually touch those files, it’s not a big deal to do the same thing manually. You can do
the exact same thing for customer specific files.

6.1.3 Updates are always done atomically.

Murphy, is alive and well. His law pervades our industry. Do you really want to risk the welfare
of your live site on the hope that your net connection won’t go out, that your ethernet cable won’t
get yanked, or that your favorite deity won’t choose today to screw with you in some other way
while you’re trying to update the site? I don’t either. Along the same lines you don’t want a user
hitting your site while you’re in the middle of an update and thus getting some Frankenstinian
combination of new and old code.

Upload the new version of the site to a temp directory on the production box. If you can run a test
suite against this temp version without negatively affecting the live version do so. If the upload
worked and your tests passed you have two options:

CHAPTER 6. APPLICATION DEPLOYMENT 23

1. Rename the temp dir to something final and repoint the server at it. This will probably result
in the least downtime. Just make sure none of your users will end up in a halfway state or
that part of their session will be tied to the old install, or anything like that.

2. Down your site and put up a maintenance notice. Hopefully you’re only doing this during a
scheduled downtime that you’ve let your users know about in advance, but we all know that’s
not always the case. Move the old app to a backup location, move in the new version and
take down the notice.

If you have to perform any updates to the database, or anything else that would potentially leave
the site in an funky trasitional state, you don’t really have a choice about putting up a maintenance
notice during that time.

The only real exception being when the update is just a matter of replacing one or two files that
you know for a fact won’t have any ripple effects, like a CSS file and can be moved in without
having to down the site, but you should still be sure to upload to a temp directory first and then
move it into the live site (after backing up the old one) because imagine how bad it would be if the
main CSS file for your site got truncated by a bad connection mid-upload.

6.1.4 All instances of your webapp are in the same state.

If you do an update in one place you do it everywhere. It’s simple. That way when customer A
reports a bug you won’t have to say, “Did we update their server with patch foo?” Because you
know. Either all the apps have it or none of the apps have it. I know, this is an obvious rule. But
people violate it all the time because we’re human, and thus don’t want to do boring work. This is
yet another reason you need an automated deployment system.

6.2 Automated application deployment

Automated application deployment is a simple solution to all of these problems. With a tool like
Capistrano http://manuals.rubyonrails.com/read/book/17 you can write a simple deployment
script that will log into the server(s), check out the latest (or specified), version of your code, make
backups of each deployment for emergency rollbacks, and restart your server or execute any other
commands you need it to (tests for example). If updating the site fails it will automatically go
back to the last version. The short amount of time you’ll spend writing the deployment script will
pay for itself in spades by giving you confidence that all of the rules mentioned above have been
addressed and by making it all happen with one reliable command.

As of this writing Capistrano seems to be the leader in the field of webapp deployment tools. But
all of the docs on it are currently Rails specific, even though you could use it for deploying anything
remotely. Rails developers should definitely be using it. Everyone else should either spend the time
to translate the Railsisms in it’s docs to something aprropriate or be ransacking it for ideas to make
a new build system.

When considering using, or building, an automated deployment system you should keep a few things
in mind:

CHAPTER 6. APPLICATION DEPLOYMENT 24

• Make sure it is integrated with your version control system. You need to be able to tell it to
deploy a specific version of your app.

• Make sure it can execute commands on the remote server. You’ll want to be able to down
the running app, copy the new files in place, and restart the app if nothing else.

• Make sure it can run your unit tests before deploying.

• It would be good if it had an easy way to roll back the live app(s) when/if something goes
wrong.

Bibliography

[1] Clinton Forbes, On the "She’ll be right, Mate" approach to software optimization http:

//clintonforbes.blogspot.com/2007/04/on-shell-be-right-mate-approach-to.html 11
Apr. 2007.

[2] Mark Reinhold, Source-control management for an open JDK http://blogs.sun.com/mr/

entry/openjdk_scm 26 Sept. 2006.

[3] Wikipedia, various authors, various dates. Relevant pages: Unit Testing http://en.

wikipedia.org/wiki/Unit_testing, Functional Testing http://en.wikipedia.org/wiki/

Functional_testing, Integration Testing http://en.wikipedia.org/wiki/Integration_

testing, System testing http://en.wikipedia.org/wiki/System_testing, and Triage http:
//en.wikipedia.org/wiki/Triage.

25

